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CALCULATING THE NONISOTHERMAL SEPARATION 

STREAMLINING OF A SPHERE 

K. B. Koshelev and M. P. Strongin UDC 532.516 

Problems in technology frequently deal with the determination of resistance and heat- 
exchange factors for a solitary sphere, where its temperature is significantly different 
from that of the incoming flow of gas. In chemically reactive systems, moreover, the need 
arises for detailed knowledge of the fields of velocity and temperature in the flow about 

the particle. 

A considerable number of studies (for example, [1-4]) has been devoted to the stream- 
lining of a sphere by a uniform incompressible steady flow. These studies have enabled 
us to ascertain a detailed pattern of flow, coincident with experiment in such minute param- 
eters as the angle of vortex separation and the length of the recirculation zone behind 
the trailing edge. Attempts have recently been made to calculate the nonisothermal problem 
[5], as well as the problem of the streamlining of a vaporized droplet in the case of small 
mass-exchange coefficients [6]. There exists a large quantity of work on the supersonic 
streamlining of a sphere at large Reynolds numbers Re~, a substantial portion of which is 
covered in [7, 8]. Hypersonic streamlining of asphere at moderate valuesof Re~ is dealt 
with in [9], but these calculations are methodological in nature, owing to the fact that 
for description of the gas flow at the Reynolds and Mach numbers under consideration, when 
the Knudsen numbers Kn = M~/Re~ > 0.i, and the Navier-Stokes equations, are, generally speak- 
ing, inapplicable. In studies dealing with the supersonic streamlining of a sphere, the 
authors have generally been interested in the characteristics of the flow in the forward part 

Barnaul. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 91-96, July-August, 1990. Original article submitted August 15, 1988; revision submitted 
March 7, 1989. 

594 0021-8944j90 /3104-0594512.50 �9 1991 Plenum Publishing Corporation 



of the sphere, and these, basically, determine the coefficient of drag and heat exchange, 
as well as the parameters of the shock wave [i0, ii]. However, as was suggested earlier, 
in the case of reacting combustion flows the characteristics of the flow behind the trailing 
edge of the sphere, particularly in the zone of flow separation, may exert a decisive effect 
on the parameters of the process. 

We will examine the streamlining of a solitary spherical particle with a steady flow 
of gas that is uniform at infinity (without shear) at Re~ ~ 200 and 0 ~ M= ~ 2. In the 
presence of vaporization the thermohysical parameters of the vapor are assumed to be identi- 
cal to the parameters of the approaching flow. A two-dimensional axisymmetrie formulation 
of the problem is assumed. The Navier-Stokesequations are used to describe the behavior 
of the flow. We choose a spherical coordinate system whose origin is at the center of the 
sphere. 

At some distance from the sphere, where r = i~ and 0 ~ 8 ~ ~/2, the following values 
are given for the unperturbed flow, namely: 

= - -cos0 ,  v 0 = s i n 0 ,  T =  t, p = 0. 

Behind  t h e  t r a i l i n g  edge  o f  t h e  s p h e r e  (~ /2  < 8 g ~) we have  t h e  f o l l o w i n g  s o f t  bound-  
a r y  c o n d i t i o n s :  

avr/ar = #vo/Or = aTlar =Op/ar = O. 

On the O = 0 and O = v axes the following conditions of axial symmetry are specified: 

v o = a v ~ O  = a T / a o  = @ / a o  = 0. 

With s m a l l  Knudsen numbers  Kn a t  t h e  s u r f a c e  o f  t h e  s p h e r e  we employ c o n v e n t i o n a l  c o n d i -  
t i o n s  o f  a d h e s i o n  and t e m p e r a t u r e  c o n s t a n c y  (v  8 = 0, T = Tw) , w h i l e  in  t h e  c a s e  o f  r a t h e r  
l a r g e  Kn (Kn ~ 0 . 0 1 5 ) ,  we have b o u n d a r y  s l i p p a g e  c o n d i t i o n s  and a t e m p e r a t u r e  d i s c o n t i n u i t y  
[ 1 2 ] :  

M~ V ~  ~ ave vo = 2.882 ~ p a t '  

(1) 

If the temperature of the sphere is equal to the boiling point, the no-flow condition 
v r = 0 is replaced by the expression 

2 B .  % aT 
Vr P e  ~ p Or 

(B = Cp T~a/L i s  t h e  c o e f f i c i e n t  o f  mass exchange  and L i s  t h e  s p e c i f i c  h e a t  o f  v a p o r i z a t i o n ,  
a = i - Tw) , c h a r a c t e r i z i n g  t h e  r e l a t i o n s h i p  be tween t h e  q u a n t i t y  o f  v a p o r i z e d  m a t e r i a l  
and t h e  f l o w  o f  h e a t  i n t o  t h e  s p h e r e .  

We a d o p t  t h e  e q u a t i o n  o f  s t a t e  f o r  an i d e a l  g a s .  The t h e r m o p h y s i c a l  p r o p e r t i e s  o f  
t h e  gas  a r e  assumed t o  be f u n c t i o n s  o f  t e m p e r a t u r e  and a r e  c a l c u l a t e d  w i t h  t h e  a i d  o f  t h e  
ASTRA-3 c o m p u t a t i o n a l  p rogram f o r  s t a t e s  in  the rmodynamic  e q u i l i b r i u m  [ 1 3 ] .  

We used  t h e  g e n e r a l l y  a c c e p t e d  n o t a t i o n ,  h l i  v a r i a b l e s  have  been made d i m e n s i o n l e s s  
in terms of their values in the unperturbed flow. The exception involves the relative pres- 
sure p and the coordinate r, referred respectively to p~V~ 2 and R s the radius of the sphere. 
The Reynolds number is determined from the diameter of the sphere: Re~ = 20~V~Rs/~. The 
quantity Re M = 2Re~/(l + ~w) will also be used later on. The subscripts ~ and w pertain 
to values of the parameters in the unperturbed flow and at the surface of the sphere. 

To solve the formulated problem we employ the method of division by physical processes 
and spatial direction. The steady solution is worked out by an established method. The 
difference scheme is constructed on the basis of implicit methods such as those discussed 
in [7, 8]. In the case of an incompressible flow, it is similar to the scheme taken from 
[7, p. 145]. The integration region is converted to a unit square by means of the trans- 
formations n = lOgR r , s = 8/v, in which a uniform grid is constructed. The convective 
terms here are replaced by differences counter to the flow, with second-order accuracy. 
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The diffusion terms and expressions of the type gradP and div v are approximated by central 
differences. It must be noted that owing to the nonuniformity of the grid with respect 
to the variable r there exists a schematic viscosity g defined by the expression g = 
plvrIrArmin =. All of the grid variables with the exception of pressure are determined at 
the nodes of the main grid. The pressure is calculated at the nodes of an auxiliary grid, 
displaced relative to the main grid through a half-step, in both directions. The chosen 
pattern makes it possible to eliminate the need for determining, in the course of the calcula- 
tions, the vorticity quantities and those of the heat flow at the surface of the sphere. 

The computational algorithm in the single time step �9 = tk+ l - t k is broken down into 
several stages. With the exception of the last stage, the difference scheme is constructed 
analogously [8], i.e., with use of the method of dividing into spatial directions the pre- 
liminary values of derivatives are calculated over time for the flow density and the tempera- 
ture, namely: (pv)* and T*. The convective and dissipative terms in the equations of motion 
and energy are accounted for implicitly. The continuity equation, which in terms of the 
spatial variables is not separated, in order to avoid additional limitations on the interval 
over time with M, close to zero, is solved in the concluding stage. The difference scheme 

here assumes the form: 

p '  -{- d iv  (pv) ~ -t- z d iv  (pv) '  = O; 

(pv) '  - -  (pv)* = --x grad p ' ;  

T ' - -  T * =  --x(?--I)T ~ d i v [ ( P _ ~ ] ,  o'T h + p ~ T ' =  y M ~ p ' .  
L V "  a 

The prime for the variables denotes the difference analog of its derivative with respect 
to time. The equation for p', derived after transformation, has the form 

Tkz, ~ div (grad p ' )  - -  (y - -  l)  p 4 d iv  grad p '  = 

(2) 

(3) 
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pk 
- -  div [(pv) h + T (pv)*] - -  T (7 - -  1) O h div [(pv)*/pgl + ~ -  T* 

= ze ( 4 ) 

Construction of the difference equation for p' near the solid surface is accomplished in 
analogy with the methods from [7], utilizing a checkerboard array; however, this pattern 
imposes limitations on the near-boundary space intervals ~r/r ~ ~e. For the given problem 
this does not prove overly burdensome, owing to the need of consolidating the grid with 
respect to the coordinate r near the sphere in order to achieve an exact approximation of 
the gradients for the unknown quantities in this direction. Equation (4) is solved with 
the aid of the method of block symmetry relaxation, subsequent to which (pv)' and T' are 
determined from (2) and (3). 

Calculations of the streamlining of a sphere by an incompressible fluid on grids of 
various dimensions and with variation of R~ were carried out for testing purposes. Removal 
of the outside boundary by more than 20 radii leads to no noticeable change in the flow 
parameters near the sphere. The number of points at the angle N 8 was varied from 31 to 
61, while along the N r radius this number changed from 61 to 151. The fraction of schematic 
viscosity in this case did not exceed 1% for all of the calculations. It developed that 
the 101 • 31 grid yields fully acceptable results for Re~ = 200. The calculations were car- 
ried out until the condition IP'I < 0.001 was satisfied throughout the entire computational 
region. Establishment was achieved within 80-300 time steps, depending on the initial ap- 
proximation. 

On the whole, the results from the calculation of streamlining with an incompressible 
fluid are in good agreement with known theoretical and experimental data [1-4, 14]. The 
distribution of vorticity ~ = i/r[8/Sr(rvs) - 8Vr/80 ] over the surface of the sphere when 
M~ = 0 and T w = 1 in comparison with the data of [7] (indicated by the dashed line) are 
shown in Fig. 1 (1-3: Ee~ = 40, i00, and 200). The separation angle derived from a numeri- 
cal solution with Re= = 200 is equal to 62.5 ~ , which is also in good agreement with the 
data from [4]. 

Comparison of the calculated coefficient of heat exchange in the case of nonisothermal 
streamlining against the approximation expression Nu = 2 + 0.6"ReMz/2Pr ~/s, presented in 
[15], yields a difference of no more than 5%. Thus, agreement of the numerical solutions 
with the experimental and theoretical data allows us to hope for an adequate description 
of the flow in the region for which no experimental information is at hand. 

Figure 2 shows the distribution of vorticity over the surface of the sphere for Re~ = 
40, M= = 0 at various differences in the temperatures T w and for various relationships bet- 
ween the length H of the recirculation zone and the temperature drop (1-3: T w = 0.5, 0.33, 
and 0.25). The angle of separation as a function of T w is very weak and is not monotonic. 
Analogous nonmonotonicity, but expressed with considerably greater clarity, appears also 
in the relationship between the length of the vortex and the temperature difference. Selec- 
tive verification of the effect of the position of the R~ boundary and the number of grid 
nodes on the length of the vortex led to no noticeable change in the results. 

Figure 3 shows the distribution of vorticity over the surface of the sphere for Re~ = 
40, M= = 0, T w = 0.25 and for various mass-exchange coefficients B (1-4: B = 0, i, 3, and 
i0) and the relationship between H and B. As we can see, as B increases, we observe a sub- 
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stantial reduction in vortex intensity and a significant increase in the length of the vortex. 

Figure 4 shows a graph for the distribution of vorticity when Re= = i00, T w = i, and 
0 ~ M~ g 2 (1-6: M~ = 0, 0.7, 0.9, i.i, 1.5, and 2.0). With an increase in M~, given a 
subsonic regime for the incoming flow, the angle of separation shifts upstream, and this 
is in agreement with the remarks made in [16]. With a supersonic flow regime we observe 
the reverse process of a reduction in the angle of separation as M~ increases. The conten- 
tion in [16] to the effect that the angle of separation increases as M~ increases therefore 
apparently pertains only to the subsonic flow regime. 

With Re~ = i00 and M~ = 0.9 we observe an extensive local supersonic zone; however, 
unlike the case of the streamlining of a sphere with a nonviscous gas, where the supersonic 
zone appears as early as M~ = 0.6 [9], in the case of viscous streamlining with Re~ = 100 
and M~ = 0.7 no local supersonic zone is observed and this is obviously related to the dis- 
sipative effect. 

The influence of the boundary conditions related to temperature in a supersonic flow 
regime, insofar as this pertains to the parameters of the shock wave, are probably not overly 
significant, and this follows from a comparison of the results from [i0], in which the condi- 
tion %T/ar = 0 is specified for the surface of the sphere, said comparison conducted relative 
to the computational data obtained with the condition T = T w. Figure 5 shows the distribu- 
tion of the velocity v r and of the density p on the axis ~ = 0 for Re~ = 180, M~ = 2. The 
dashed line shows the plot of the data from [I0]. 

The considerable effect of the finiteness of Kn on the dimensions of the vortex and 
the point of separation is shown. Thus, the result of the solution for the problem with 
Re~ = i00 and M= = 1.5 and the standard conditions of adhesion and constancy of temperature 
yields magnitudes for the vortex and the angle of separation larger approximately by a factor 
of 2 than those obtained in calculations with conditions (i). It should be noted that the 
calculations carried out for Kn = 0.015-0.02 with the conditions of adhesion leads to a 
considerable (~15%) divergence from the experimental data in [17] with respect to the coeffi- 
cient of resistance. However, introduction of boundary conditions (i) leads to agreement 

with the results from [17]. 

Thus, numerical investigation demonstrated the substantial effect of vaporization and 
of Kn on the parameters of the separation zone. We also noted a qualitative change in the 
behavior of the vortex as related to the streamlining regime, i.e., an increase in its dimen- 
sions as M~ increase from 0 to i, and a sharp reduction in the vortex with a further increase 

in M~. 
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DEVELOPING MODELS TO CALCULATE THE EXCHANGE OF HEAT 

UNDER CONDITIONS OF SUPERSONIC TURBULENT DETACHED FLOWS 

A. A. Zheltovodov, E. G. Zaulichnyi, and V. M. Trofimov UDC 536.24:532.54 

Research into the processes of heat exchange in various turbulent flows is of great 
theoretical and practical interest. Among the more complex and urgent problems of aerogas- 
dynamics we can include, with considerable certainty, the study of turbulent detached flows 
[i]. At supersonic flow velocities the determination of heat-exchange intensity in the 
vicinity of the separation zones assumes particular importance [2]. With significant changes 
in the level of turbulence within the external flow, in the boundary layers at the walls, 
and in the detached intermixing layers [3], methods based on simple correlations of heat- 
exchange parameters with characteristic pressures, see, for example [4-6], are rather limited. 
The approach proposed in [7] that is based on the utilization of a model of a nonequilib- 
rium boundary layer seems to be more promising, and in addition to the factors of compressi- 
bility, nonisothermicity, and others, which are dealt with in this method in addition to 
the factors considered within the framework of asymptotic theory [8], the influence of a 
change in the intensity of large-scale turbulence is also considered. The heat-exchange 
calculations conducted in [7] for the vicinity of a cavity are in good agreement with the 
experimental data and the development of such an approach can expediently be applied to 
other conditions. It is with this purpose in mind that we have conducted additional experi- 
mental studies into the quasi-two-dimensional separation of flow in the vicinity of inclined 
protrusions and recesses [9]. The chosen geometric configuration has enabled us to analyze 
the effect of sequential interaction between the turbulent boundary layer and the compres- 
sion shock and rarefaction waves insofar as these related to the intensity of heat exchange. 
Resort to the extensive additional information derived for these situations in [3, i0, ii] 
on the basis of utilizing a complex of various diagnostic methods: visualization of the 
extreme streamlines, optical and pneumometric measurements of pressure and velocity fields, 
thermoanemometric measurements of the characteristics of turbulence, all of these have en- 
abled us to refine flow structure and the characteristic physical properties in order to 
validate the computational model being developed here with respect to new conditions. 

Heat-exchange measurements were conducted in a wind tunnel with an operating wind-stream 
diameter of 304 mm within an Eifel chamber at incident-flow Mach numbers of M I = 2, 3, and 
4. The individual Reynolds numbers varied within a range of Re I = (30-91)'10 ~ m -I, the 
deceleration pressure p* = 200-1540 kPa, and the deceleration temperature T* = 255-270 K. 

The studied configurations formed an inclined step oriented counter to the flow (Fig. 
ib) or an inclined recess, streamlined in the opposite direction, with a fixed height h = 
6 mm and a face deflection angle of ~ = 25 ~ . The distance from the leading edge of the 
plate to the apex of the compression angle in the case of the protruding step amounted to 
141 mm, and to 150 mm in the case of the apex of the expansion angle on the model of the re- 
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